Human telomerase reverse transcriptase promoter regulation in normal and malignant human ovarian epithelial cells.
نویسندگان
چکیده
The telomerase RNA-protein complex responsible for maintenance of telomeric DNA at chromosome ends, is usually inactive in most primary somatic human cells, but is specifically activated with in vitro immortalization and during tumorigenesis. Although expression of the RNA component of telomerase appears to be constitutive, the expression pattern of human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, is correlated with measured enzyme activity. In particular, a >80% concordance has been reported between telomerase activity and hTERT mRNA expression in ovarian tumors. Accordingly, to learn more about the mechanism regulating hTERT gene expression in ovarian carcinoma, we have performed a detailed analysis of the 5'-flanking promoter region of the hTERT gene. We have reported previously the isolation and analysis of a 5.8-kb genomic fragment containing the human hTERT gene promoter (M. Tzukerman et al., Mol. Biol. Cell, 11: 4381-4391, 2000). Deletion analysis of this promoter was carried out using transient transfection of promoter-reporter constructs in four different telomerase-expressing, ovarian carcinoma-derived cell lines, the tumorigenic properties of which have been characterized, and was compared with telomerase-negative primary human fibroblasts and nontransformed ovarian epithelial cells. These assays have shown that the hTERT promoter is inactive in telomerase-negative cells and is active in telomerase-positive cell lines. A core promoter of 283 bp upstream of the transcription initiation site (TI) was found to be sufficient for maximum promoter activity, suggesting the presence of inhibitory elements within the larger promoter sequence. Gel shift analysis of the core promoter using nuclear extracts from the ovarian and control cell lines revealed specific transcription factor binding using extracts from telomerase-positive cells. Among the binding elements, we identified two E-boxes (CACGTG) as well as a novel element (MT-box), which we identified recently in a number of differentiation systems. Site-directed mutagenesis was used to introduce mutations into this novel transcription factor binding element. These mutations significantly affect the transcriptional activity of hTERT promoter in a cell type-specific manner and suggest that the transcription factors that bind to the E-box and the novel element cooperatively function as major determinants of hTERT expression and telomerase activity in ovarian cancer. Further comparison of promoter activity, telomerase activity, and telomere length among the different ovarian cancer cells indicated that a threshold level of telomerase activity is apparently sufficient to protect telomere integrity and permit the immortal state of the different ovarian cancer cell lines.
منابع مشابه
Regulation in Normal and Malignant Human Ovarian Epithelial Human Telomerase Reverse Transcriptase Promoter
The telomerase RNA-protein complex responsible for maintenance of telomeric DNA at chromosome ends, is usually inactive in most primary somatic human cells, but is specifically activated with in vitro immortalization and during tumorigenesis. Although expression of the RNA component of telomerase appears to be constitutive, the expression pattern of human telomerase reverse transcriptase (hTERT...
متن کاملExpression Pattern of Alternative Splicing Variants of Human Telomerase Reverse Transcriptase (hTERT) in Cancer Cell Lines Was not Associated with the Origin of the Cells
Telomerase and systems controlling their activity have been of great attention. There are controversies regarding the role of the alternative splicing forms of the human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase. Therefore, the correlation between telomerase enzyme activity, the abundance of alternatively spliced variants of hTERT and doubling time of a seri...
متن کاملGene Promoter Catalytic Subunit (Human Telomerase Reverse Transcriptase) Constitutively Active Caspase-6 Using the Human Telomerase Treatment of Malignant Glioma Cells with the Transfer of Updated Version
Because the apoptotic pathway is often disrupted in tumor cells, its genetic restoration is a very attractive approach for the treatment of tumors. To treat malignant gliomas with this approach, it would be preferred to restrict induction of apoptosis to tumor cells by establishing a tumor-specific expression system. Telomerase is an attractive target because the vast majority of malignant glio...
متن کاملA novel treatment of human malignant gliomas in vitro and in vivo: FADD gene transfer under the control of the human telomerase reverse transcriptase gene promoter.
Telomerase activity has a close relationship with malignancies in many cell types and it is tightly regulated at the transcriptional level of human telomerase reverse transcriptase (hTERT). Utilizing the hTERT promoter, the authors developed a gene delivery system of Fas associated protein with death domain (FADD) (hTERT/FADD). FADD is a protein which plays an important role in the apoptotic pa...
متن کاملRNA Expression Levels Human Mammary Epithelial Cells with Limiting Telomerase Amplification of Telomerase Reverse Transcriptase Gene in
Activation of telomerase is a crucial step during cellular immortalization, and in some tumors this results from amplification of the human telomerase reverse transcriptase (hTERT) gene. Immortalization of normal human cells has been achieved by transduction with hTERT cDNA under the control of a strong heterologous enhancer/promoter, but this is sometimes an inefficient process, with periods o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 61 14 شماره
صفحات -
تاریخ انتشار 2001